CompOSE CompStar Online Supernovae Equations of State

Stefan Typel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute

for the CompOSE core team (Micaela Oertel, Thomas Klähn, S. T.)

CompOSE meeting

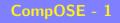
Institut de Physique Nucléaire de Lyon (IPNL)

CompOSE I

• features

- repository of equations of state (data tables and additional information) for applications in astrophysics, nuclear physics and beyond
- \circ EoS for nuclear/quark matter and stellar matter

CompOSE I


• features

- repository of equations of state (data tables and additional information) for applications in astrophysics, nuclear physics and beyond
- \circ EoS for nuclear/quark matter and stellar matter
- \circ EoS can be one-, two-, or three-dimensional
- information on thermodynamic quantities, chemical composition and microscopic quantities

CompOSE I

• features

- repository of equations of state (data tables and additional information) for applications in astrophysics, nuclear physics and beyond
- \circ EoS for nuclear/quark matter and stellar matter
- \circ EoS can be one-, two-, or three-dimensional
- information on thermodynamic quantities, chemical composition and microscopic quantities
- \circ flexible data format for storage of EoS tables
- tools for extracting, interpolating and generating EoS tables according to the needs of the user with determination of additional quantities
- supports ASCII and HDF5 data formats in output
- \circ subscription for newsletter available

CompOSE II

• access & up-to-date information

- o website: compose.obspm.fr no registration needed any more
- \circ manual (version 1.00, \approx 70 pages): available from website or arXiv:1307.5715 [astro-ph.SR], will be updated soon

CompOSE II

• access & up-to-date information

- website: compose.obspm.fr
 no registration needed any more
- \circ manual (version 1.00, \approx 70 pages): available from website or arXiv:1307.5715 [astro-ph.SR], will be updated soon

• objective of today's meeting

 \circ extension of CompOSE database \Rightarrow contribute your EoS

How to contribute with your EoS

three steps:

• preparation of EoS tables

• three tables with parameters (mandatory):

temperature T, baryon number density n_b , charge fraction Y_q

- \circ table with thermodynamic quantities (mandatory)
- table with composition of matter (optional)
- table with microscopic quantities (optional)

How to contribute with your EoS

three steps:

• preparation of EoS tables

- three tables with parameters (mandatory):
 - temperature T, baryon number density n_b , charge fraction Y_q
- table with thermodynamic quantities (mandatory)
- table with composition of matter (optional)
- table with microscopic quantities (optional)

• testing and preparation of data sheet

 \circ use of FORTRAN program compose.f90 and C++ program <code>eosform.cpp</code>

How to contribute with your EoS

three steps:

- preparation of EoS tables
 - three tables with parameters (mandatory):
 - temperature T, baryon number density n_b , charge fraction Y_q
 - \circ table with thermodynamic quantities (mandatory)
 - table with composition of matter (optional)
 - table with microscopic quantities (optional)
- testing and preparation of data sheet
 - \circ use of FORTRAN program compose.f90 and C++ program <code>eosform.cpp</code>
- uploading your EoS to the database
 - \circ no general rule
 - o contact the CompOSE administrators: develop.compose@obspm.fr

• parameter tables (mandatory)

- temperature T
 unit: MeV
 name of file: eos.t
- \circ baryon number density n_b unit: fm⁻³ name of file: eos.nb
- \circ charge fraction Y_q unit: - (dimensionless) name of file: eos.yq

• parameter tables (mandatory)

- temperature T
 unit: MeV
 name of file: eos.t
- \circ baryon number density n_b unit: fm⁻³ name of file: eos.nb
- \circ charge fraction Y_q unit: - (dimensionless) name of file: eos.yq
- all three tables needed for one-, two-, and threedimensional EoS tables!
- files provide mapping of parameter values $(X = T, n_b, Y_q)$ to indices (i_X)

• parameter tables (mandatory)

- temperature T
 unit: MeV
 name of file: eos.t
- \circ baryon number density n_b unit: fm⁻³ name of file: eos.nb
- \circ charge fraction Y_q unit: - (dimensionless) name of file: eos.yq
- all three tables needed for one-, two-, and threedimensional EoS tables!
- files provide mapping of parameter values $(X = T, n_b, Y_q)$ to indices (i_X)

• general structure of file:

 $\begin{array}{ll} i_X^{\min} & (\min \min \min index) \\ i_X^{\max} & (\max \min index) \\ X(i_X^{\min}) & (value at \min \min index) \\ X(i_X^{\min}+1) & \\ \vdots & \\ X(i_X^{\max}-1) & \\ X(i_X^{\max}) & (value at \max \min index) \end{array}$

• parameter tables (mandatory)

- temperature T
 unit: MeV
 name of file: eos.t
- \circ baryon number density n_b unit: fm⁻³ name of file: eos.nb
- \circ charge fraction Y_q unit: - (dimensionless) name of file: eos.yq
- all three tables needed for one-, two-, and threedimensional EoS tables!
- files provide mapping of parameter values $(X = T, n_b, Y_q)$ to indices (i_X)

• general structure of file:

 i_X^{\min} (minimum index) i_X^{\max} (maximum index) $X(i_X^{\min})$ (value at minimum index) $X(i_X^{\min}+1)$ $X(i_X^{\max}-1)$ $X(i_X^{\max})$ (value at maximum index) \circ one entry per row, $X(i_X+1) > X(i_X)$ $\circ i_X^{\max} - i_X^{\min} + 3$ rows in total $\circ i_X^{\max} - i_X^{\min} + 1$ values of quantity X

- table with thermodynamic quantities (mandatory)
 - \circ name of file: <code>eos.thermo</code>
 - \circ general structure of file

• table with thermodynamic quantities (mandatory)

- o name of file: eos.thermo
- general structure of file

$$m_n \quad m_p \quad I_l$$
 (first row)

$$i_T \ i_{n_b} \ i_{Y_q} \ Q_1 \ Q_2 \ Q_3 \ Q_4 \ Q_5 \ Q_6 \ Q_7 \ N_{\text{add}} \underbrace{q_1 \ q_2 \ \dots \ q_{N_{\text{add}}}}_{N_{\text{add}} \text{ quantities}}$$

(subsequent rows)

\circ m_n : neutron mass in MeV, m_p proton mass in MeV

- $\circ I_l$: lepton index, $I_l = 0$ no leptons, I_l with leptons (e and/or μ)
- \circ parameter indices: $i_T i_{n_h} i_{Y_a}$
- $Q_1 = p/n_b$ [MeV], $Q_2 = s/n_b$ [dimensionless], $Q_3 = \mu_b/m_n 1$ [dimensionless], $Q_4 = \mu_q/m_n$ [dimensionless], $Q_5 = \mu_l/n_b$ [dimensionless],
 - $Q_6 = f/(n_b m_n) 1$ [dimensionless], $Q_7 = e/(n_b m_n) 1$ [dimensionless]
- $\circ N_{add}$ number of additional quanties $q_1, \ldots, q_{N_{add}}$ (defined by contributor of EoS) o order of rows 2, 3, . . . irrelevant

• table with composition of matter (optional)

- \circ name of file: <code>eos.compo</code>
- general structure of file (every row)

• table with composition of matter (optional)

- \circ name of file: <code>eos.compo</code>
- general structure of file (every row)

$$i_{T} i_{n_{b}} i_{Y_{q}} I_{\text{phase}} N_{\text{pairs}} \underbrace{I_{1} Y_{I_{1}} \dots I_{N_{\text{pairs}}} Y_{I_{N_{\text{pairs}}}}}_{N_{\text{pairs}} pairs} X_{\text{pairs}}$$

$$N_{\text{quad}} \underbrace{I_{1} A_{I_{1}}^{\text{av}} Z_{I_{1}}^{\text{av}} Y_{I_{1}} \dots I_{N_{\text{quad}}} A_{I_{N_{\text{quad}}}}^{\text{av}} Z_{I_{N_{\text{quad}}}}^{\text{av}} Y_{I_{N_{\text{quad}}}}}}_{N_{\text{quad}} q_{\text{uadruples}}}$$

• parameter indices: $i_T i_{n_b} i_{Y_q}$, phase index I_{phase} (defined by contributor of EoS)

- \circ number of pairs $(N_{
 m pairs})$ and quadruples $(N_{
 m quad})$, can change from row to row
- particle (for pairs) or group (for quadruples) indices I_i (see below) and corresponding number fractions $Y_i = n_i/n_b$ [dimensionless]
- \circ average mass numbers $A_{I_i}^{\mathrm{av}}$ and average charge numbers $Z_{I_i}^{\mathrm{av}}$
- \circ order of rows irrelevant

- table with microscopic quantities (optional)
 - \circ name of file: <code>eos.micro</code>
 - \circ general structure of file (every row)

$$i_T \ i_{n_b} \ i_{Y_q} \ N_{qty} \underbrace{K_1 \ q_{K_1} \ K_2 \ q_{K_2} \ \dots \ K_{N_{qty}} \ q_{K_{N_{qty}}}}_{N_{qty} \text{ pairs}}$$

• table with microscopic quantities (optional)

- \circ name of file: eos.micro
- general structure of file (every row)

$$i_T i_{n_b} i_{Y_q} N_{qty} \underbrace{K_1 q_{K_1} K_2 q_{K_2} \dots K_{N_{qty}} q_{K_{N_{qty}}}}_{N_{qty} \text{ pairs}}$$

- \circ parameter indices: $i_T \ i_{n_b} \ i_{Y_q}$
- \circ number of quantities $(N_{
 m qty})$, can change from row to row
- \circ indices K_i defining quantity and particle (see below)
- \circ order of rows irrelevant

- indices for identification of particles (here the most common in EoS tables)
 - \circ leptons: $I_i = 0$ electrons, $I_i = 1$ muons
 - \circ baryons: $I_i=10$ neutrons, $I_i=11$ protons
 - o nuclei: *I_i* = 1000 *A_i* + *Z_i* e.g. *I_i* = 2001 ²H, *I_i* = 3001 ³H, *I_i* = 3002 ³He, *I_i* = 4002 ⁴He
 - \circ more in table 3.2 of manual

- indices for identification of particles (here the most common in EoS tables)
 - \circ leptons: $I_i = 0$ electrons, $I_i = 1$ muons
 - \circ baryons: $I_i=10$ neutrons, $I_i=11$ protons
 - \circ nuclei: $I_i = 1000 \; A_i + Z_i$ e.g. $I_i = 2001 \; ^2 {\rm H}$, $I_i = 3001 \; ^3 {\rm H}$, $I_i = 3002 \; ^3 {\rm He}$, $I_i = 4002 \; ^4 {\rm He}$
 - \circ more in table 3.2 of manual

indices for identification of quantities and particles

- $\circ K_i = 1000 I_i + J_i$ with particles index I_i and quantity index J_i
- \circ quantity indices
 - $J_i = 50$ nonrelativistic single-particle potential U_{I_i} [MeV]
 - $J_i = 51$ relativistic vector self-energy V_{I_i} [MeV]
 - $J_i = 52$ relativistic scalar self-energy S_{I_i} [MeV]

more in table 7.3 of manual

 \circ example: $K_i = 11052$ scalar self-energy of proton

Testing of tables and preparation of data sheet

- preparation of FORTRAN program compose.f90
 - \circ download code.zip from CompOSE website
 - o unzip code.zip
 - \circ change line 26 in Makefile to HDF5 = 0
 - \circ compile program with make

Testing of tables and preparation of data sheet

- preparation of FORTRAN program compose.f90
 - \circ download code.zip from CompOSE website
 - o unzip code.zip
 - \circ change line 26 in Makefile to HDF5 = 0
 - \circ compile program with make

• test of EoS table

- o copy your EoS files eos.t, eos.nb, eos.yq, eos.thermo, ... into directory with compose program
- \circ run compose
- maybe you have to modify the sample files eos.parameters and/or eos.quantities (see manual) in case of errors
- \circ a file <code>eos.report</code> should have been generated with information on the EoS

Testing of tables and preparation of data sheet

- preparation of FORTRAN program compose.f90
 - o download code.zip from CompOSE website
 - o unzip code.zip
 - \circ change line 26 in Makefile to HDF5 = 0
 - \circ compile program with make

• test of EoS table

- o copy your EoS files eos.t, eos.nb, eos.yq, eos.thermo, ... into directory with compose program
- \circ run compose
- maybe you have to modify the sample files eos.parameters and/or eos.quantities (see manual) in case of errors
- \circ a file <code>eos.report</code> should have been generated with information on the EoS

• preparation of data sheet

- \circ download <code>eosform.zip</code> from CompOSE website
- \circ compile C++ program eosform.cpp (e.g. with g++ -o eosform eosform.cpp)
- \circ run <code>eosform</code> to generate <code>LATEXfile datasheet.tex</code>
- \circ compile datasheet.tex and edit if necessary

Interpolation

- should reproduce values of all quantities at basic grid points
- depends on order I (set in file eos.parameters)
 - $\circ~I=1$ interpolation continuous in function values
 - $\circ~I=2$ interpolation continuous in function and first derivatives
 - $\circ~I=3$ interpolation continuous in function, first and second derivatives
- derivatives calculated by finite-difference formula on non-equidistant grids

Interpolation

- should reproduce values of all quantities at basic grid points
- depends on order I (set in file eos.parameters)
 - $\circ~I=1$ interpolation continuous in function values
 - $\circ~I=2$ interpolation continuous in function and first derivatives
 - $\circ~I=3$ interpolation continuous in function, first and second derivatives
- derivatives calculated by finite-difference formula on non-equidistant grids
- present scheme:
 - \circ first step: one-dimensional interpolation in Y_q
 - \circ second step: two-dimensional interpolation in T and n_b , mixed partial derivatives needed, choice unique?
- details in Appendix A of manual

Interpolation

- should reproduce values of all quantities at basic grid points
- depends on order I (set in file eos.parameters)
 - $\circ~I=1$ interpolation continuous in function values
 - $\circ~I=2$ interpolation continuous in function and first derivatives
 - $\circ~I=3$ interpolation continuous in function, first and second derivatives
- derivatives calculated by finite-difference formula on non-equidistant grids
- present scheme:
 - \circ first step: one-dimensional interpolation in Y_q
 - \circ second step: two-dimensional interpolation in T and n_b , mixed partial derivatives needed, choice unique?
- details in Appendix A of manual
- problems:
 - \circ thermodynamic consistency, quantities not independent
 - \circ oscillations depending on grid resolution
 - \Rightarrow interpolation errors
- alternatives?