Nuclear Equation of State for Compact Stars and Supernovae

Isaac Vidaña CFC, University of Coimbra

This is not a conventional talk. I will not present the results of a particular work. The scope of this talk is to <u>initiate</u> & <u>motivate the discussion</u> on the topic of the nuclear EoS

The Four Topics of the WG2 as defined in the MOU of NewCompstar

- □ Nuclear EoS for Compact Stars & Supernovae
- □ Low-energy QCD & Super-dense matter
- □ Superfluidity & Superconductivity in Compact Stars
- Transport phenomena & Reaction rates for Compact Stars
 & Supernovae

Nuclear EoS for Compact Stars & Supernovae One of the tasks of WG2 is:

Validate available EoS across different experiments & observations. The WG will define a protocol where the EoS, and the underlying interactions, are consistently checked and compared with nuclear experiments & observations of compact stars

To such end we need to:

- Define where we are today (not an easy task)
 - <u>search</u>, <u>compile</u> & <u>classify</u> existing EoS
- Define where we want to go tomorrow (even more difficult)
 - Perhaps perform a collective effort to construct reliable EoSs to be used in astrophysical applications ? Partly done with CompOSE

What do we know to build the Nuclear EoS?

Around ρ_0 the nuclear EoS can be characterized by few isoscalar & isovector parameters

$$\frac{E}{A}(\rho,\beta) = E_0 + \frac{1}{2}K_0x^2 + \frac{1}{6}Q_0x^3 + \left(E_{sym} + Lx + \frac{1}{2}K_{sym}x^2 + \frac{1}{6}Q_{sym}x^3\right)\beta^2 + \cdots$$
$$x = \frac{\rho - \rho_0}{3\rho_0} \quad , \quad \beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

✤ Isoscalar parameters

$$E_{0} \approx -16 \quad MeV \quad , \quad K_{0} = 9\rho_{0}^{2} \left. \frac{\partial^{2} E_{IS}(\rho)}{\partial \rho^{2}} \right|_{\rho = \rho_{0}} \approx 240 \pm 20 \quad MeV \quad , \quad Q_{0} = 27\rho_{0}^{3} \left. \frac{\partial^{3} E_{IS}(\rho)}{\partial \rho^{3}} \right|_{\rho = \rho_{0}} \approx -500 \div 300 \quad MeV$$

 Isovector parameters
 Less certain. Large variation of the prediction of the different models

$$E_{sym} = \frac{1}{2} \frac{\partial^2 E / A}{\partial \beta^2} \bigg|_{\beta=0}, \quad L = 3\rho_0 \frac{\partial E_{IV}}{\partial \rho} \bigg|_{\rho=\rho_0}$$
$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{IV}}{\partial \rho^2} \bigg|_{\rho=\rho_0}, \quad Q_{sym} = 27\rho_0^3 \frac{\partial^3 E_{IV}}{\partial \rho^3} \bigg|_{\rho=\rho_0}$$

J. M. Lattimer & A. W. Steiner, EPJA 50, 40 (2014)

Symmetry Energy Sensitive Observables

- Sub-saturation densities
- \checkmark Neutron skin thickness in heavy nuclei
- ✓ Giant & pygmy resonances in neutron-rich nuclei
- ✓ n/p & t/³He ratios in nuclear reactions
- ✓ Isospin fragmentation & isospin scaling in nuclear multi-fragmentation
- \checkmark Neutron-proton correlation functions at low relative momenta
- \checkmark Isospin diffusion/transport in heavy ion collisions
- \checkmark Neutron-proton differential flow
- Supra-saturation densities
- ✓ π^{-}/π^{+} & K⁻/K⁺ ratios in heavy ion collisions
- \checkmark Neutron-proton differential transverse flow
- \checkmark n/p ratio of squeezed out nucleons perpendicular to the reaction plane
- \checkmark Nucleon elliptic flow at high transverse momenta

Correlation of K_{sym} & K_{τ} with L

Constraints of the Nuclear EoS from HIC

- Collective flow constraints confirms the softening of the EoS at high densities
- ✤ Constraints from kaon production are consistent with the flow constraints and bridge gap to GMR constraints
- Symmetry energy dominates the uncertainty in the neutron matter EoS

Astrophysical determination of the Nuclear EoS

MPA1

MS1

15

AP4

10

Radius (km)

♦ <u>Piecewise polytropic EoS</u> above $ρ_0$ from mass-radius relation of 3 type-I X-ray bursts

- SLy below ρ_0
- Piecewise poytropic above ρ_0

$$\rho_{i-1} < \rho \le \rho_i, \quad \varepsilon = \alpha_i \rho + \beta_i \rho^{\Gamma_i}, \quad P = (\Gamma_i - 1) \beta_i \rho^{\Gamma_i}$$

5

SQM1

$\log P_0 (0.37 \rho_{\rm ns})$	$\log P_1 (1.85 \rho_{\rm ns})$	$\log P_2 (3.7 \rho_{\rm ns})$	$\log P_3 (7.4 \rho_{\rm ns})$
-0.64	[0.6–1.4]	$1.70\substack{+0.15\\-0.15}$	$2.8^{+0.1}_{-0.2}$

0

0

F. Ozel & D. Psaltis, PRD 80, 103003 (2009)F. Ozel, G. Baym & T. Guver, PRD 82, 101301(R) (2010)

1000

100

10

0.2

0.4

P (Mev fm⁻³)

20

MSI

0.6

 ρ (baryons fm⁻³)

0.8 1

GS1

Astrophysical determination of the Nuclear EoS

♦ Nuclear parameters determined in a Bayesian data analysis of:

nuclear systematics	& lab.	experiments
---------------------	--------	-------------

Quantity	Lower Limit	Upper Limit	
K (MeV)	180	280	
K' (MeV)	-1000	-200	
S_v (MeV)	28	38	
γ	0.2	1.2	
$n_1 ({\rm fm}^{-3})$	0.2	1.5	
$n_2 ({\rm fm}^{-3})$	0.2	2.0	
$\varepsilon_1 \; (\text{MeV fm}^{-3})$	150	600	
$\varepsilon_2 \;({\rm MeV}\;{\rm fm}^{-3})$	ε_1	1600	

$$\varepsilon = n_B \left\{ m_B + B + \frac{K}{18}(u-1)^2 + \frac{K'}{162}(u-1)^3 + (1-2x)^2 [S_k u^{2/3} + S_p u^{\gamma}] + \frac{3}{4}\hbar cx (3\pi^2 n_b x)^{1/3} \right\}$$

Three-Nucleon Forces

Necessary to:

- Reproduce the spectra of light nuclei
- Saturate properly in non-relativistic many-body calculations

Exotic Matter: The Hyperon Puzzle

"Hyperons \rightarrow "soft (or too soft) EoS" not compatible (mainly in microscopic approaches) with measured (high) masses. However, the presence of hyperons in the NS interior seems to be unavoidable."

- ✓ can YN & YY interactions still solve it ?
- \checkmark or perhaps hyperonic three-body forces ?
- ✓ what about quark matter ?

Approaches to the Nuclear EoS

Phenomenological approaches

Based on effective densitydependent interactions with parameters adjusted to reproduce nuclear observables and compact star properties

- ✤ Liquid drop type: BPS, BBP, LS, OFN
- Thomas-Fermi: Shen
- ✤ ETFSI: BSk
- ✤ HF: NV, Sk, PAL, RMF, RHF, QMC
- Statistical models: HWN, RG, HS

I apologize for all those approaches I have missed

Microscopic ab-initio approaches

Based on two- & three-body realistic interactions. The EoS is obtained by "solving" the complicated many-body problem

- ✤ Variational: APS, CBF, FHNC, LOVC
- ✤ Monte-Carlo: VMC, DMC, GFMC, AFDMC
- Diagrammatic: BBG (BHF), SCGF
- * RG methods: $V_{low k}$ & SRG from χEFT potentials
- ✤ DBHF

A glance on the phenomenological models

Proliferation of phenomenological models predicting different SM & NM EoS

RMF

Skyrme

80 SkO (I) PNM E_o Es $E_0 + \beta^2 E_0$ 400 BEM NLp MSk7 (III) 60 SNM ΝLρδ Energy per particle [MeV] DBHF (Bonn A DD 300 D³C SkX (II) 40 KVR KVOR [MeV] - DD-F 200 20 100 0 - 20 0.5 0.3 0.5 0.3 0.3 0.1 0.1 0.5 0.1 0.3 0.9 0 0.6 0.9 0.3 0.6 0.3 0.6 0.9 n [fm³] n [fm³] n [fm³] n [fm⁻³] n [fm⁻³] n $[fm^{-3}]$ J. R. Stone et al., PRC 68, 034324 (2003) T. Klan et al., PRC 74, 035802 (2006)

Recently M. Dutra et al., (arXiv:1405.3633) have analyzed 263 parametrizations of 7 different types of RMF imposing constraints from SM, PNM & Symmetry Energy and its derivatives. Similar analysis was done for 240 Skyrme forces by M. Dutra et al., (PRC 85, 035201 (2012))

Difficulties of microscopic approaches

- Different NN potentials in the market
- Short range repulsion makes any perturbation expansion in terms of V meaningless. Different ways of treating SRC

A comparison of some microscopic approaches

Compare different many-body techniques using the same NN interaction to find the sources of discrepancies & ultimately determine "systematic error" associated to the nuclear EoS predicted predicted by many-body theory

The NN: Av18 & simpler ones: Av4', Av6' & Av8' (3BF are not included)

M. Baldo, A. Polls, A. Rios, H.-J. Schulze & I.Vidaña, PRC 86, 064001 (2012)

A comparison of some microscopic approaches

Tensor & spin-orbit and their in-medium treatment are at the heart of most of the observed discrepancies

A First Attempt of Classification

Approach	Туре	β-eq.	T=0	Finite T	Inhom. Matt.	Hom. Matt.	CompOSE	Form
LDM	Phen	Х	Х	Х	Х	Х	Х	Table
TF	Phen	Х		Х	Х			Table
ETFSI	Phen	Х	Х		Х	Х		Analytic & Table
HF	Phen	Х	Х	Х				Table
SM	Phen	Х	Х	Х	Х	Х	Х	Table
Var	Micr	Х	Х			Х		Analytic & Table
MC	Micr	Х	Х			Х		Analytic & Table
Diagr	Micr	Х	Х	Х		Х		Table
RG	Micr		Х			Х		Table
DBHF	Micr	Х	Х			Х		Table

Open Questions

- Why is the isovector part of the EoS & particularly the density dependence of the nuclear symmetry energy so uncertain ?
- ✤ What is the role of many-body cluster contributions ?
- Is there a solution for the hyperon puzzle ? . If yes, what it is ?
- ✤ And many, many others ...

Phenomenological approaches

Liquid drop type

Incomplete List of References

[BPS] G. Baym, C. Pethick & P. Sutherland, Astrophys. J 170, 299 (1971)
[BBP] G. Baym, H. A. Bethe & C. Pethick, Nucl. Phys. A 175, 225 (1971)
[LS] J. M. Lattimer & F. D. Swesty, Nucl. Phys. A 535, 331 (1991)
[OFN] M. Oertel, A. Fantina & J. Novak, Phys. Rev. C 85, 055806 (2012)

Thomas-Fermi

[Shen] H. Shen, H. Toki, K. Oyamatsu, K. Sumiyoshi, Nucl. Phys. A 637, 435 (1998)

✤ ETFSI

[BSk] S. Goriely. N. Chamel & J. M. Pearson, Phys. Rev. C 82, 035804 (2010)

✤ Hartree-Fock

[Sk] D. Vautherin & D. M. Brink, Phys. Rev. C 3, 626 (1972)
[NV] J. N. Negele & D. Vautherin, Nucl. Phys. A 207, 298 (1973)
[RMF] B. D. Serot & J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986)
[RHF] A. Boussy et al., Phys. Rev. Lett. 55, 1731 (1985); Phys. Rev. C 36, 380 (1987)
[PAL] M. Prakash, T. L. Ainsworth & J. M. Lattimer, Phys. Rev. Lett. 61, 2518 (1988)
[QMC] P. A. M. Guichon, A. W. Thomas & K. Tsushima, Nucl. Phys. A 814, 66 (2008)

Statistical models

[HWN] W. Hillebrandt, R. Wolf & K. Nomoto, Astron. & Astrophys. 133, 175 (1984)
[RG] A. Raduta & F. Gulminelli, Phys. Rev. C 82, 065801 (2010)
[HS] M. Hempel & J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)

Microscopic approaches

✤ Variational

[FHNC] S. Fantoni & S. Rosati, Nuov. Cim. A 20, 179 (1974)
[LOCV] J. C. Owen, R. F. Bishop & J. M. Irvine, Nucl. Phys. A 277, 45 (1978)
[CBF] A. Fabrocini & S. Fantoni, Phys. Lett. B 298, 263 (1993)
[APR] A. Akmal, V. R. Pandharipande & D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

Monte Carlo

[VMC] R. B. Wiringa, Phys. Rev. C 43, 1585 (1991)
[AFDMC] K. E. Schmidt & S. Fantoni, Phys. Lett. B 446, 99 (1999)
[GFMC] J. Carlson et al., Phys. Rev C 68, 025802 (2003)

✤ Diagrammatic

[SCGF] L. P. Kadanoff & G. Baym, *Quantum Statistical Mechanics* (Benjamin, NY., 1962)[BBG] B. D. Day, Rev. Mod. Phys. 39, 719 (1967)

Rernomalization Group methods

[V_{low k}] S. K. Bogner, T. T. S. Kuo & A. Schwenk, Phys. Rep. 286, 1 (2003)
[SRG] S. K. Bogner, R. J. Furnstahl & R. J. Perry, Phys. Rev. C 75, 061001(R) (2007)

✤ DBHF

B. Ter Haar & R. Malfiet, Phys, Rep. 149, 207 (1987); Phys. Rev. C 36, 1611 (1987)

R. Brockmann & R. Machleidt, Phys. Rev. C 42, 1965 (1990)

L.Shen et al., Phys. Rev. C 56, 216 (1997); C. Fuchs et al., Phys. Rev. C 58, 2022 (1998)

The discussion is served

