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Gravitational wave emission 
from individual neutron stars 

 NSs in compact binary systems 
(see Giacomazzo, Hinderer, Bauswein,Galeazzi talks) 

do not belong to this class, but  

•   isolated NSs
•   NSs in Low Mass X-ray Binaries

are included!
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Two mechanisms can lead to GW emission from individual NSs
potentially detectable by 2nd and 3rd generation interferometers: 

Oscillations

Deformations

• Which processes can lead to detectable GWs?

• How can GW detection from these processes constrain the EoS?

• How can GW emission from these processes explain astrophysical 
observations?

In this talk I will discuss these two classes of processes,
trying to answer to the key questions:
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Neutron star oscillations

When a NS is excited by some perturbation, it can be set into non-radial oscillations 
emitting GWs at the characteristic frequencies of its quasi-normal modes (QNMs). 
These oscillations are damped, due to GW emission, thus have complex frequencies:

  ωn = σn + ι / τn

The quasi-normal modes frequencies (σn) and damping times (τn), at which 
the NS oscillates, are also the frequencies and damping times

at which it emits gravitational waves.

Several possible excitation mechanisms:

• glitches

• accretion from a companion star

• gravitational collapse giving birth to the NS

• phase transition of the matter composing the star

• compact binary inspiral and coalescence (see other talks)

• electromagnetic activity, as in magnetar giant flares
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Neutron star oscillations

 GWs are the perfect tool to study QNMs of NSs:

• GWs require strong-field phenomena, such as those in the inner core of      
   a NS,  to be generated;
• once produced, GWs hardly interact with matter and energy, 
   carrying unaltered information on the emitting process.

Few further remarks:

NS QNMs carry the imprint of the behaviour of ultra-dense matter
The measurement of frequencies and damping times of the QNMs 
would give us unvaluable information on the matter composing the star,
in particolar on the EoS of matter at supra-nuclear densities
(gravitational wave asteroseismology) but also other features (superfluidity,
thermodynamical gradients, etc.)

Some QNMs can become unstable
    in presence of rotation, dynamical and secular instabilities can set in;
   could lead to a large GW flux, and could explain observed values of NS spins.
    Oscillation instabilities also appear when the NS is warm, soon after birth.
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•  g-modes:  buoyancy force. Probe entropy/composition gradients.
        ν~few hundreds of Hz but τ very large => not efficient in radiating GW 

•  p-modes:  pressure.  ν~few thousands of Hz. Probe sound speed in the star.

•  f-mode:  the fundamental mode, intermediate between g and p. ν~1-2 kHz;
    it the most efficient in radiating GW (τ~1s). Scales ~ with average density.

•  w-modes:  pure space-time modes.  ν ~ many kHz

Neutron star oscillations

Including more physics, other families of modes appear:

•  r-modes:  Coriolis force (for rotating stars only)

•  magnetic modes

•  elastic modes (in the crust)

•  superfluid modes (when baryon superfluidity occurs)

Several groups (e.g. Tubingen, Southampton, Rome, Tessaloniki, St. Petersburg, etc.) 
are working to include more and more physics, to study different kinds of QNMs

The QNMs of NSs are classified depending to the main restoring force:
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Neutron star oscillations

I will first summarize the state of the art about the study of stable modes,
in the context of GW asteroseismology.

It should be remarked that with this approach we can compute 
frequencies and damping times (given the EoS and other NS properties)

but we know very few about the amplitude of the modes, i.e. their excitation.

What do we know about excitation mechanisms and amplitudes for stable modes:

• QNM of a proto-NS excited by core collapse: collapse modelling still uncertain, 
        SN signal may be dominated by PNS oscillations (h~10-23-10-20 for galactic SN)      

                                                                                                                            (Ferrari ’10; Scheidegger et al. ’10; Ott et al. ’11)

• QNMs from NS glitches (sudden changes in NS rotation rate, driven by 
interaction of internal superfluid with the NS crust, or crust reconfiguration).

       Current models (e.g. Sidery, Passamonti, Andersson ’10; Haskell, Pizocchero, Sidery ’12) predict amplitudes 
       too low for detection by 2nd and 3rd generation interferometers.

• QNMs in binary NSs (tidal excitation and hypermassive NS), see other talks

Unstable modes will be discussed later
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Neutron star oscillations
GW asteroseismology of simple (cold, non-rotating, non-superfluid etc.) NSs

which the imaginary part of the frequency is much
smaller than the real part we use the algorithm developed
in [31,32]: the perturbed equations are integrated for
real values of the frequency from r ! 0 to radial infinity,
where the amplitude of the Zerilli function is computed;
the frequency of a QNM can be shown to correspond
to a local minimum of this function and the damping
time is given in terms of the width of the parabola
which fits the wave amplitude as a function of the fre-
quency near the minimum. We shall indicate this method
as the CF-algorithm.

For highly damped modes, when the imaginary part of
the frequency is comparable to (or greather than) the real
part, the CF-algorithm cannot be applied and we use the
continued fractions method [33], integrating the per-
turbed equations in the complex frequency domain.
With this method we find the frequencies of the axial
and polar w-modes. A clear account on continued frac-
tions can be found in [34]. However, it should be men-
tioned that this algorithm cannot be applied when
M=R " 0:25, and therefore the w-mode frequencies can-
not be computed for ultracompact stars.

The parameters of the stellar models coneesidered in
this study are shown in the Appendix.

A. Fits and Plots

As done in Ref. [2], the frequencies and damping times
of the various modes can be fitted by suitable functions of
the mass and of the radius of the NS. In computing the fit
parameters, we shall exclude the data referring to strange
stars, because there is a very large degree of arbitrariness
in the choice of the bag model parameters; conversely, the
EOS from which we derive the empirical relations fit at
least some (or many) experimental data on nuclear prop-
erties and nucleon-nucleon scattering and/or some obser-
vational data on NSs. However, in all figures we shall also
plot the data corresponding to strange stars for
comparison.

In Refs. [2,35] it was shown how the fits should be used
to set stringent constraints on the mass and radius of the
star provided the frequency and the damping times of
some of the modes are detected in a gravitational signal,
and we shall not repeat the analysis here. We shall rather
focus on a different aspect of the problem showing that, if
we know the mass of the star, the QNM frequencies can
be used to gain direct information on the EOS of nuclear
matter, and to this purpose we shall plot the mode fre-
quencies as a function of the stellar mass.

Let us consider the fundamental mode firstly.
Numerical simulations show that this is the mode which
is mostly excited in many astrophysical processes and
consequently the major contribution to gravitational-
wave emission should be expected at this frequency.
Moreover, as for the p-modes, its damping time is quite
long compared to that of the w-modes, therefore it should

appear in the spectrum of the gravitational signal as a
sharp peak and should be easily identifiable.

It is known from the Newtonian theory of stellar
perturbations that the f-mode frequency scales as the
square root of the average density; indeed, our numerical
results for the f-mode can be fitted by the following
expression

!f ! a# b

!!!!!!
M
R3

s
; a ! 0:79$ 0:09; b ! 33$ 2; (2)

where a is given in kHz and b in km% kHz. In this fit and
hereafter in all fits, frequencies will be expressed in kHz,
masses and radii in km, damping times in s and
c ! 3% 105 km=s.
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FIG. 2 (color online). The frequency of the fundamental
mode is plotted in the upper panel as a function of the square
root of the average density for the different EOS considered in
this paper. We also plot the fit given by Andersson and Kokkotas
(AK-fit) and our fit (New fit). The new fit is systematically
lower (about 100 Hz) than the old one. The damping time of the
fundamental mode is plotted in the lower panel as a function of
the compactness M=R. The AK-fit and our fit, plotted, respec-
tively, as a dashed and continuous line, do not show significant
differences.

GRAVITATIONAL WAVE ASTEROSEISMOLOGY REEXAMINED PHYSICAL REVIEW D 70, 124015 (2004)

124015-5

QNMs of NSs are functions of their mass and radius, irrespective of the EoS. 
If we measure (through GW detection) the frequencies and damping times
of the f- and p1- modes, we know M and R, useful to understand the NS EoS

(N.Andersson & K.Kokkotas, MNRAS ’98; K.Kokkotas, T. Apostolatos, N. Andersson, MNRAS ’01; O. Benhar, V. Ferrari, L.G. , S. Marassi ’04, ’07)

Alternatively,  a simple measure of the f-mode frequency (if M is known)
can significantly constrain the EoS
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(O Benhar et al., ’04, ‘07)
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Neutron star oscillations
GW asteroseismology of rotating NSs  (stable modes)

(H. Dimmelmeier, N. Stergioulas, J. Font ’06; W. Kastaun, ’08; E. Gaertig, K. Kokkotas ’11; S. Yoshida ’12; D. Doneva, E. Gaertig, K. Kokkotas, C. Kruger ’13)
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FIG. 3: The normalized oscillation frequencies as a function of the normalized rotation rate in the comoving frame. The results
for l = |m| = 2, 3, 4 and for all of the configurations in Table II are depicted.

for l = m = 3:

ωu
c l=3

ω0
= 1 + 0.373

(

Ω

ΩK

)

− 0.485

(

Ω

ΩK

)2

, (22)

and for l = m = 4

ωu
c l=4

ω0
= 1 + 0.360

(

Ω

ΩK

)

− 0.543

(

Ω

ΩK

)2

. (23)

As one can see from Figure 3, the frequencies for the stable branches ωs
c can be fitted very well by a single quadratic

polynomial for all values of l and we obtain

ωs
c

ω0
= 1 − 0.235

(

Ω

ΩK

)

− 0.358

(

Ω

ΩK

)2

. (24)

As discussed previously, the relations (21)–(24) have to be supplemented with additional information on how the
mode frequencies in the nonrotating limit ω0 depend on the neutron star mass and radius. It has been shown [5, 6]
that the average density is a good measure to parametrize this dependency and Figure 4 shows the results with our
pool of configurations.

By making a linear approximation similar to [5, 6, 8], the following relations are obtained,
for l = 2:

1

2π
ω0 l=2 [kHz] = 1.562+ 1.151

(

M̄0

R̄3
0

)1/2

, (25)

for l = 3:

1

2π
ω0 l=3 [kHz] = 1.764+ 1.577

(

M̄0

R̄3
0

)1/2

, (26)

for l = 4:

1

2π
ω0 l=4 [kHz] = 1.958+ 1.898

(

M̄0

R̄3
0

)1/2

. (27)
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FIG. 4: Mode frequencies for l = 2, 4 as a function of the average density in the nonrotating limit.

Here we have introduced the dimensionless variables

M̄ =
M

1.4 M⊙
and R̄ =

R

10 km
. (28)

and the subscript (..)0 indicates that these are the masses and radii of the nonrotating configurations.
In relations (21)–(24), the Kepler frequency ΩK shows up as an additional free parameter. But ΩK is roughly

proportional to the average density as well, as it was shown in [3, 56–58]. Instead of using the relation given in
these papers, we derive our own version obtained from fitting the data for the realistic EoS used here, which is more
accurate for the considered range of masses, radii and EoS. We then obtain

1

2π
ΩK[kHz] = 1.716

√

M̄0

R̄3
0

− 0.189 . (29)

This relation can be refined further by assuming that the coefficients are not constant but depend on the compact-
ness M/R [3, 58]. We prefer to use the relation in its current form, because it will prove to be useful later for the
asteroseismology examples and additionally it also estimates the Kepler frequency with a very good accuracy – for
the models studied here the error is only up to approximately 2%.

The last thing we have to specify in order to be able to use the above relations for gravitational wave asteroseis-
mology is the following: The equations (25)–(27),(29) are derived using nonrotating neutron star models. Therefore
the masses and radii that enter in these equations are the masses and radii of the configurations in the nonrotating
limit. As our goal is to be able to determine the parameters of the emitting rotating neutron stars we should know
how masses and radii scale with rotation. We found out that it is convenient to derive an approximate relation for the
normalized masses and radii as a function of Ω/ΩK and the results are plotted on Fig. 5. The data can be fitted well
with an exponential function of the form y = A + B exp(Cx). Due to the normalization we have that y(x)|x=0 = 1
which sets a constraint on the parameters of the fit, i.e. A = 1 − B. Thus we obtain the following relations for the
normalized masses and radii

M

M0
= 0.991+ 9.36× 10−3 exp

(

3.28
Ω

ΩK

)

, (30)

R

R0
= 0.997+ 2.77 × 10−3 exp

(

4.74
Ω

ΩK

)

. (31)

Using these relations we can obtain the mass and the radius of a rotating neutron star once we have determined the
parameters in the nonrotating limit, M0 and R0, from equations (25)–(27),(29).

D. Doneva et al. ‘13

Fits with M,R still hold but in two steps: 
first find (given Ω) the corresponding QNM frequency of the non-rotating star, 

then, from this, get M/R3.

Still, only approximated solutions (Cowling or CFC or m=0, etc.)
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GW asteroseismology of hot, newly born proto-neutron stars
Neutron star oscillations

In the first minute after the supernova explosion,  a fraction of the kinetic 
energy excites QNM oscillations, whose frequencies and damping times
are affected by the thermodynamical and neutrino properties of the star.

    

     
      

  
      

ν      



     
   

         
          

             
           


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(V.Ferrari, J.A. Pons, G. Miniutti, MNRAS ’03) (F. Burgio, V. Ferrari, L.G., H.-J. Schultze, PRD ’11)

While in cold, old NSs the f- and p- modes are 
the only ones relevant for GW emission, in hot, young NSs 

the g-mode, which is related to the entropy gradient, is important as well.
σ and τ of the g- and f- mode tend to converge in the first tenths of s.
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GW asteroseismology of NSs with baryon superfluidity in the core
Neutron star oscillations

To include superfluidity of neutrons and superconductivity of protons
 in the model of NS oscillations, the star should be treated 

as composed by two (interacting) fluids.

In recent years, theoretical computations and observations
are providing a growing evidence that baryons in the NS core are superfluid.

A new class of QNMs appears, with a strong dependence on temperature; 
at some Ti they become similar to the other modes: GW emission can be relevant.
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[20]. We find at the lowest order [20]:

X lm(0) = (ρ0 + P0)e
ν0/2

{[

4π

3
(ρ0 + 3P0)

−ω2 e
−ν0

l

]

W lm(0) +
1

2
K lm(0)

}

,

H lm
1 (0) =

2lK lm(0) + 16π(ρ0 + P0)W lm(0)

l(l+ 1)
. (67)

This lowest order is sufficient to solve the LD equa-
tions and find the QNMs with good accuracy: we
do not need to include second order terms in the
expansion.

Imposing the boundary conditions (67) we have, for
each value of ω, two independent solutions of the
LD equations.

We integrate the LD equations up to r = ri, where
we require W lm

(b) (ri+) = W lm(ri−), continuity of

H lm
1 , K lm, X lm, and impose Eq. (66) which al-

lows us to determine δµlm up to an arbitrary con-
stant. Therefore, we have three independent solu-
tions of Eqs. (A.1)–(A.8) satisfying the boundary
conditions.

• If the star has a two-layer structure, we have to
consider at r → 0 the asymptotic expansion of the
full set of equations (A.1)–(A.8), in which the quan-
tities W lm

(b) , H
lm
1 , K lm, X lm are coupled with the

superfluid degree of freedom δµlm. We find that the
relations (67) remain unchanged [provided that one
makes a replacementW lm(0) → W lm

(b) (0)], while the

expansion of the equation (64) at r → 0, yields a
new boundary condition:

δµlm ′′(0) =
1

2l + 3

{

8πρ0
3

l(l + 2)δµlm(0)− l
h2

h0
δµlm(0)

+
e−ν0/2ω2

h0B0

[

δµlm(0) +
γ2 0

nb0γ3 0
X lm(0)

]}

. (68)

We note that since the differential equation for
δµlm is of the second order, in this case we need
to include the second order term δµlm ′′(0) in the
expansion.

Imposing the boundary conditions (67) and (68)
we have, for each value of ω, three independent
solutions of the perturbation equations (A.1)-(A.8).

2. Outer boundary conditions

At the outer boundary (r = rf ) the oscillation equa-
tions imply W lm

(b) (rf −) = W lm(rf +), and continuity of

H lm
1 , K lm, X lm. These conditions coincide with the cor-

responding boundary conditions at r = ri. The situa-
tion with the boundary condition for the quantity δµlm

is more subtle. If the superfluid phase does not extend
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FIG. 1: (color online) Left panel: Nucleon critical temper-
atures Tck (k = n, p) versus energy density ρ for model A.
Right panel: Redshifted critical temperatures T∞

ck versus ra-
dial coordinate r (in units of R) for model A.

up to the crust, one has to impose Eq. (66) at r = rf . If,
instead, the superfluid phase extends up to the crust, a
boundary condition on δµlm has to be imposed at the
crust-core interface (rf = Rcc), where Eq. (66) does
not apply, because h(r = Rcc) ̸= 0. In that case the
appropriate boundary condition (see Ref. [42]) follows
from the requirement of the absence of particle trans-
fer (baryons and electrons) through the interface, that
implies continuity of the radial velocity δur through the
crust-core interface; this, combined with the condition
W lm

(b) (Rcc−) = W lm(Rcc+), yields Xr = 0 at r = Rcc.

Using Eq. (57) the latter condition can be rewritten as
[41, 42]

(

δµlm ′ +
l

r
δµlm

)

r=Rcc

= 0 . (69)

The condition at the outer boundary of the superfluid
phase [either (66) or (69)] reduces the number of inde-
pendent solutions to two. We then integrate the standard
LD equations, in terms of W lm, V lm, etc., up to the NS
surface, where we impose the vanishing of the Lagrangian
pressure perturbation, X lm(R) = 0. After that only one
solution meeting all the boundary conditions inside the
star survives. Outside the star we solve the Zerilli equa-
tion with two boundary conditions at the stellar surface
[55]. Finally, at infinity, we impose the vanishing of the
ingoing gravitational radiation. This condition is satis-
fied by a discrete set of (complex) frequencies ω: the
QNMs of the star.

IV. STELLAR MODELS

Microphysics input and equilibrium stellar models
adopted in the present paper are essentially the same
as in Ref. [42]. We briefly describe them here in order to
make our presentation more self-contained.
As mentioned in Sec. II, we consider the simplest npe-

matter composition of NS core. We adopt the Akmal-
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at the center of the star, and the structure of the su-
perfluid NS changes from two-layers to three-layers (see
Sec. IV). This transition is evident in the lower panel of
Fig. 4. This behaviour was also evident in the decoupled
limit studied in [41, 42] (see, e.g., Fig. 6 of [42]).
Fig. 4 also shows the occurrence of avoided crossings:

at particular values of the temperature (which we call res-
onance temperatures T∞

i ) the frequencies of some normal
and superfluid modes become very close, but the curves
do not cross. A detail of the avoided crossing is shown
in the inset in upper panel of Fig. 4 for model A. This
phenomenon was expected, since it occurs in the case
of radial pulsations [43–45]. A similar phenomenon was
also shown to occur, e.g., in Refs. [28, 38] (in non-rotating
stars) and [65, 66] (for inertial modes of rotating stars),
studied in the zero-temperature limit. In these cases, the
frequencies of the modes were computed as functions of
the entrainment parameter, and it was shown that those
curves had avoided crossings.
Finally, Fig. 4 shows (thin solid lines) the frequencies

of superfluid and normal modes calculated in the decou-
pled limit. It is clear that the frequencies of the QNMs
in the coupled and decoupled limits are very similar for
T∞ ̸= T∞

i . This is expected, since, as it was already
noted in Sec. VB, the coupling parameter s is small for
realistic EoSs [44]. The coupling is crucial to determine
the avoided crossings but, far from the resonance tem-
peratures T∞

i , the frequencies of the QNMs are barely
affected by the coupling. We can conclude that the ap-
proximation of decoupled superfluid and normal modes
works perfectly well for calculation of the QNMs of su-
perfluid NSs.

2. Gravitational damping times

In Fig. 5 we show the gravitational damping times τGW

of the lowest frequency QNMs, as functions of redshifted
temperature, for model A (upper panel) and model B
(lower panel). In principle, our approach allows us to
compute τGW for all of the QNMs4. However, when the
imaginary part of the mode is much smaller than the real
part, numerical errors make it difficult to compute the
damping times with good accuracy; this problem seems
to be more severe for temperatures ! 5 × 107 K, and
for damping times " 103− 104 s. Still, we think that the
values shown in Fig. 5 provide a reliable estimate at least
of the order of magnitude of the damping times, and of
their dependence on the temperature.
We can see that at the resonance temperatures T∞

i ,
the curves of the damping times do cross, and the modes

4 The approach described in Sec. III does not yield the viscous
damping times, because dissipative terms are not included into
the hydrodynamic equations. However, once the perturbation
equations are solved, the viscous damping times can be com-
puted, see, e.g., Ref. [42].
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FIG. 4: (color online) Eigenfrequencies, ν, of the first l =
2 modes as functions of the redshifted stellar temperature
T∞ for model A (upper panel) and model B (lower panel).
The oscillation modes (first 5 modes 1, . . . , 5 for model A and
first 7 modes 1, . . . , 7 for model B) are shown by alternating
dashed and dot-dashed lines. The thin lines show superfluid
and normal modes in the decoupled limit. The inset in the
upper panel shows one of the avoided crossings in detail. The
inset in the lower panel shows the first five modes near the
phase transition temperature T∞

≈ 2×108 K. Vertical dotted
lines indicate the maximum redshifted critical temperature
for neutrons in the core (T∞

cnmax = 6 × 108 K for model A,
T∞

cnmax ≈ 5.09× 108 K for model B).

change their nature from normal to superfluid and vice
versa. Fig. 5 also shows that, far from the resonance tem-
peratures T∞

i , the superfluid modes have damping times
" 102 − 103 s, much larger than those of the normal
modes (∼ 0.1 − 1 s). This result is consistent with cal-
culations of Ref. [38] and the prediction of Ref. [41] (see
also Ref. [44]) that the intensity of the gravitational ra-
diation should be smaller, by a factor of ∼ s2 ≃ 10−3, for
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FIG. 5: (color online) Damping times for the lowest frequency
modes shown in Fig. 4 for model A (upper panel) and model
B (lower panel) as functions of redshifted stellar temperature
T∞. Type of lines corresponds to that in Fig. 4. Thin solid
lines show the damping time of the f -mode in decoupled limit.

superfluid modes than for normal modes with similar fre-
quencies. Conversely, at temperatures close to T∞

i , the
damping times of the superfluid modes sharply decrease,
becoming comparable with those of the corresponding
normal modes. This behaviour is due to the fact that at
T∞ ∼ T∞

i , the normal and superfluid degrees of freedom
become significantly coupled. Thin lines in both pan-
els of Fig. 5 show gravitational damping times τGW for
the normal f -mode, which is calculated in the decoupled
limit (notice that τGW = ∞ for superfluid modes in this
limit; thus they are not shown here).

The viscous damping time for normal and superfluid
modes τb+s, which has been computed in Ref. [42] in
the decoupled limit, shows an analogous qualitative be-
haviour. However, τb+s for normal modes is much larger
than for superfluid modes, while for gravitational damp-
ing times the situation is opposite. Comparing our results
with those of Ref. [42], we find that at moderate and high
temperatures (T∞ ! 3 × 107 K) the viscous damping
times for superfluid modes are significantly larger than
the gravitational damping times. However, this compar-
ison has been only made for the lowest lying QNMs, be-

cause we have been able to compute τGW for these modes
only. We note that, as the order of the mode increases,
the gravitational damping time increases, while the vis-
cous damping time decreases [42], therefore it is reason-
able to expect that τGW becomes larger than τb+s for
high-order superfluid modes. Moreover, even low-order
modes will be damped mostly due to (shear) viscosity if
the stellar temperature is sufficiently small.
QNMs with shorter damping times are more efficient

in emitting GWs. Indeed, the GW flux can be estimated
as LGW ≃ 2Emech/τGW [18], where Emech is the me-
chanical pulsation energy stored in the mode, introduced
in Sec. III C. Therefore, for generic values of the tem-
perature the superfluid modes are not good sources of
GWs, because their damping times are large; but, at
temperatures close to the resonance temperatures T∞

i ,
their damping times become comparable to those of the
normal modes, and they can become much more efficient
in emitting GWs. We can expect, then, that at certain
stages of NS thermal evolution, when a NS reaches one
of the resonance temperatures, a new QNM – in princi-
ple detectable by GW observers – can appear in the GW
spectrum.

3. Eigenfunctions

In Fig. 6 we show the velocity eigenfunctions for the
f -mode (upper panel), the p1-mode (middle panel) and
the sf0-mode (lower panel), for model A at T∞ = 6×107

K. We show the (l = 2) quantities W lm
(b) , V

lm
(b) , obtained

expanding the radial and angular components, respec-
tively, of the perturbation δUµ

(b) in spherical harmonics

(27), and the quantities W lm
(sfl), V lm

(sfl) obtained expand-

ing in the same way Xµ [see Eq. (32)]. Note that the
knowledge of these quantities allows one, using Eq. (33),
to calculate also the functions W lm and V lm, defined by
the expansion of δuµ (23).
We can see that for the first superfluid mode W lm

(sfl) ≫

W lm
(b) , V

lm
(sfl) ≫ V lm

(b) . This is a natural result, since the
coupling parameter s is small and superfluid oscillations
almost do not excite baryon current (see Ref. [44]). This
supports the interpretation (see Ref. [42] and the footnote
in Sec. III C) of W lm

(b) , V
lm
(b) as describing non-superfluid

degrees of freedom and W lm
(sfl), V

lm
(sfl) as describing super-

fluid degrees of freedom. For the first pressure mode we
obtain W lm

(b) ∼ W lm
(sfl), V

lm
(b) ∼ V lm

(sfl), while for the funda-

mental mode W lm
(sfl) ≪ W lm

(b) , V
lm
(sfl) ≪ V lm

(b) . The latter
result is also expected and follows from the two facts
[42]: (i) superfluid degrees of freedom (i.e., the quanti-
ties W lm

(sfl) and V lm
(sfl)) are excited by the gradient of the

chemical potential imbalance δµ [see Eqs. (32) and (57)]
and (ii) f -mode oscillations are almost incompressible
(i.e., deviation from the beta-equilibrium in the course
of f -mode oscillations is small), thus δµ is only weakly
perturbed for f -modes.

T/108T/108
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Neutron star oscillations
GW asteroseismology of NSs with magnetic fields and elasticity in the crust

(L. Samuelsson, N. Andersson, MNRAS ’07; Y. Levin, MNRAS ’07; H. Sotani, K. Kokkotas, N. Stergioulas, MNRAS ’08; 
P.Cerda-Duran, N.Stergioulas, J.Font, MNRAS ’09; A. Colaiuda, K. Kokkotas, MNRAS ’11; M. Gabler, P. Cerda-Duran, J. Font, E. Muller, N. Stergioulas, MNRAS ’13)

They can probably explain QPOs in the  
X-ray emission from giant flares in 
magnetars (present ly, the only 
observational data of NS QNMs!)

4 RAPID X–RAY OSCILLATIONS IN SGR 1806–20
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FIG. 3.— Power spectrum accumulated from data in the time interval 200–
300 s (see Fig. 1). Two low–frequency peaks at ∼18Hz and ∼30Hz are
visible, together with a small excess at ∼95Hz (see text for details).

of the 7.56 s modulation. A similar interpretationwas originally
proposed by Feroci et al. (2001; see also Thompson & Duncan
2001) to explain the smooth flux decay in the first tens of sec-
onds of the 1998 giant flare from SGR 1900+14. Indeed, a vari-
ety of seismic modes are expected to be excited as consequence
of the magnetically-induced large scale fracturing of the crust
which gives rise to giant SGR flares. After the main event, the
shaking of the neutron star crust by these seismic modes gives
rise to a coupling with sheared Alfvén waves on field lines in
the neutron star’s magnetosphere, in turn causing electromotive
pair heating (Thompson & Blaes 1998). A modulation of this
heating at the seismic frequencies would easily generate a flux
modulation, as long as the frequencies are sufficiently low that
phase coherence can be maintained across the photosphere of
the trapped fireball.
Out of the variety of non-radial neutron star modes studied

by McDermott et al (1988), there are several classes that have
characteristic frequencies in the ∼10-100Hz range. Toroidal
modes appear to be especially promising because they should
be easily excited by the large crustal fracturing. Moreover,
these torsional modes couple more easily with the external
magnetic field lines than modes originating deeper in the stellar
interior (Blaes et al. 1989; Duncan 1998). The fundamental
toroidal mode of a rigid neutron star’s crust is the l = 2 (2t0)

mode whose frequency corresponds to a period of ∼33.6ms,
somewhat dependent on the mass, radius and crustal magnetic
field (McDermott et al. 1988, Duncan 1998). The 30.4Hz
(∼32.8ms) oscillation could very well be identified with the 2t0
mode and the 92.5Hz (∼10.8ms) QPO would thus correspond
to a higher harmonic: indeed, it matches well the expected fre-
quency of the l=7 mode, suggesting a relatively small-scale
structure in the seismic wave pattern (and thus the magnetic
multipole structure). This could be due, for example, to the
principal mode inducing further fractures at various sites in
the crust. The shortest duration of the higher frequency QPO
is qualitatively in accord with the expectation that the damp-
ing rate of the oscillations strongly increases with frequency
(Duncan 1998). Recently, a large (∼ 5km) crustal fracturing
on the surface of SGR 1806–20 was inferred from a ∼5ms rise
timescale observed during the onset of the hyperflare (Schwartz
et al. 2005). We note that such fracturing can easily excite the
toroidal modes with characteristic frequencies at which QPOs
have been detected.
The 18Hz oscillation, on the other hand, might be associ-

ated with a different mode which must couple to the magneto-
sphere as well. A poloidal component of the core magnetic field
supports a torsional mode with a frequency νcore ≃ 2.5Bz,15 Hz
(Thompson & Duncan 2001) with R ∼ 10 km and a core den-
sity ≃ 1015 g cm−3, Bz,15 being the core poloidal field in units of
1015 G: a strong Bz,15 ≃ 7 would be required to match the ob-
served 18Hz. Although extremely strong, such a field is fully
plausible given that a (mainly toroidal) field in excess of 1016 G
is required to power repeated giant flares of this magnitude over
the ∼ 104 yr lifetime of an SGR (Stella, Dall’Osso, & Israel
2005).
In summary, the discovery of rapid QPOs in the tail of the

2004 giant flare of SGR 1806–20 could constitute the first di-
rect information on the neutron star crust and magnetic field,
thought to be of magnetar strength, and provides a new per-
spective in the study of neutron star oscillations.
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Scientifica e Tecnologica (MIUR – COFIN), and Istituto
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been supported by a NASA grant. We thank an anonymous ref-
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Fig. 4.— Average power spectra from 1.5 s intervals centered at different rotational phases.
The upper curve was computed using 20 successive 1.5 s intervals centered on the rotational

phase of the 84 Hz QPO (see Fig. 3). The frequency resolution is 4/3 Hz. The middle
curve shows the same spectrum with 4 Hz resolution. Two QPOs are clearly detected in this
spectrum, and a third, weaker feature is present at the higher frequency resolution (top, see

the text for details). The lower curve is from reference phases ±1.5 s away from the 84 Hz
signal phase. No QPOs are detected at these phases. The vertical dotted lines mark the

frequencies of l = 2, 4, 7, and 13 lt0 modes, in order of increasing frequency, assuming that
the 2t0 mode has a frequency of 28.5 Hz. The vertical dashed line marks the frequency of the
transient 84 Hz QPO. At the 5.16 s period, 1.5 s corresponds to 0.3 cycles, or about 105◦.

Characteristic error bars are shown for each spectrum.

SGR 1900+14,  T.Strohmayer & A.Watts ‘05

Real stars do have magnetic fields (up to ~1012 G for normal stars,  ~1016 G for magnetars)

and elasticity in the crust (shear modulus µ~1030erg/cm3).

Each of these ingredients yields a new family of modes (Alfven and torsional),
with frequencies from few tens to few hundreds Hz.

The spectrum of magnetic modes seems to be quite involved:  
there are both a continuum band, and discrete modes.

These oscillations seem to be due to coupled magnetic and torsional modes 
of the crust, possibly coupled with the core.

Not clear whether they can emit detectable GWs 
(Levin ’06; Corsi & Owen ’11; Y. Levin & M. van Hoven ’11; D. Zink, P. Lasky, K. Kokkotas ‘12)
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Instabilities of rotating neutron stars

Rotating neutron stars can have instabilities 
appearing, at the linear level, as unstable QNMs.

                  Effective if 
1

⌧inst
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Dynamical instabilities: growth time of the order of the oscillation timescale

Most relevant for GW emission: bar-mode instability of f-mode
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FIG. 4: Snapshots of the evolution of models U3, U11 and U13 at various times. The different columns refer to the three models and show
isodensity contours for ρ = 0.9, 0.8, 0.7, 0.6, 0.5−2j × ρmax, where j = 1, . . . , 6 and ρmax is the maximum value of ρ in each panel. The
above models were evolved on a 193× 193× 68 grid with grid coordinate resolution of 0.5M⊙ (0.74km) and imposing equatorial symmetry.
The time evolution of some quantities characterising these models is reported in Figs. 5, 6 and 7.
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FIG. 4: Snapshots of the evolution of models U3, U11 and U13 at various times. The different columns refer to the three models and show
isodensity contours for ρ = 0.9, 0.8, 0.7, 0.6, 0.5−2j × ρmax, where j = 1, . . . , 6 and ρmax is the maximum value of ρ in each panel. The
above models were evolved on a 193× 193× 68 grid with grid coordinate resolution of 0.5M⊙ (0.74km) and imposing equatorial symmetry.
The time evolution of some quantities characterising these models is reported in Figs. 5, 6 and 7.

(Baiotti et al. ‘07)

Secular instabilities: growth time much larger than the oscillation timescale
Most relevant for GW emission: CFS instability of r-modes

(Univ. Illinois Urbana-Champaign)
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Instabilities of rotating neutron stars
Dynamical bar-mode instability

(Shibata, at al. ’00; Watts et al. ApJ ’05; Shibata & Sekiguchi ’05;Baiotti et al. ’07; Dimmelmeier et al. ’08; Ott et al. ’12; 
Gaertig et al. ’11; Passamonti et al. ’13; Franci et al. ’13; De Pietri et al. ‘14)

When � =
T

|W |
rotational kinetic energy

gravitational binding energy
larger than threshold

(may occur in core-collapse) m=2 f-mode grows deforming the NS into a “bar”

Both fully relativistic and perturbative computations seem to show
that it is difficult that actual core-collapse supernovae produce 

dynamical long-term bar-mode instabilities;
but this is not completely ruled out, 

due to the uncertainties of core-collapse models.

The threshold depends on several features 
(differential rotation, EoS, magnetic field, etc.), but it seems to be βd~0.24.

If high degree of differential rotation, the βd can be much smaller.

If such instability develops in a proto-NS, it may be detected by 
2nd generation detectors for a galactic supernova, 

by 3rd generation detectors for a supernova in a nearby galaxy.
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Instabilities of rotating neutron stars
Secular instabilities

CFS instabilities are GW-driven secular instabilities which set in when
the propagating mode of a rotating star has a pattern speed which is 

co-rotating  with respect to infinity, counter-rotating with respect to the star.
In this case, GW emission removes angular momentum, but the amplitude 

of the  perturbation increases (at the expense of the NS rotational energy).

(Bondarescu et al., ’07; Watts et al., ’08; Haskell et al. ’09; Passamonti et al. ’09; Ho et al., ’11; Haskell et al. ’12; Doneva et al. ’13;
Makmoodifar & Strohmayer ’13; Bondarescu & Wasserman ’13; Alford et al. ’14; Gusakov et al. ’14; Haskell et al. ‘14)

CFS instability of r-modes is more interesting: it 
occurs at any value of ν, and could also occur in 

accreting NSs in low-mass X-ray binaries (LMXBs).

The amplitude of the mode keeps increasing, until dissipative effects set in, 
or, due to non-linear couplings, the mode reaches a saturation amplitude.

CFS instability of f-mode requires rapid rotation: 
may be relevant in core-collapse;

as in the case of dynamical instability, it may or may not 
be associated  to detectable GWs: we need to 

understand better the features of core-collapse.

22

damping times, the current multipoles (14) are the dominant contribution to the energy loss. The frequencies and
damping times computed with our time evolution code also match well with the analytic relations in [63].

FIG. 12: Instability window for both r- and f -modes for the AkmalPR EoS. The gravitational mass in the nonrotating limit is
M = 2.0 M⊙.

As one can see, the instability window for the r-mode is much larger than for the f -mode for all of the considered
values of the spherical index l and as the neutron stars cool down, the r-mode will become unstable first. Thus
the star will lose angular momentum quickly and may never reach the region of the f -mode instability. In practice
though this scenario depends crucially on the r-mode saturation amplitude – if it is small enough then the star would
lose angular momentum more slowly and it may eventually reach the f -mode instability window [20]. The results
for nonlinear mode couplings of the r-modes suggest indeed that the saturation amplitude may be limited to small
values [64, 65]. Thus if the saturation amplitude of the f -mode is large enough, the f -mode instability could develop
in young neutron stars. Unfortunately, its saturation amplitude is still uncertain and further studies in this direction
are needed to answer the question if CFS unstable f -modes of fast rotating neutron star can be observed.

VII. CONCLUSIONS

In this paper we extended the results for nonaxisymmetric oscillations of fast rotating neutron stars in the Cowling
approximation [8, 15, 16] by introducing realistic equations of state. We obtain the f -mode oscillation frequencies
and damping times for a large set of equilibrium configurations with different EoS and central energy densities and
then derive empirical relations that can be used for gravitational wave asteroseismology. We then study the inverse
problem and at the end we consider the f -mode instability window for some models which are most promising to
develop the CFS-instability. Another important aspect of our work is that the empirical relations obtained here are
not only derived for the quadrupolar case but also for l = |m| = 3, 4 as these modes get CFS unstable at lower
rotation rates. This required some generalizations of the relations in [8] in order to be applicable for arbitrary values
of l.

The results and the derived asteroseismology relations are compared with the polytropic ones presented in [8]
and the following conclusions can be made. As we explained in detail in the previous section, the asteroseismology
relations we derive can be divided into two groups – relations for the normalized frequencies and damping times as
a function of the rotational frequency and relations for the frequencies and damping times in the nonrotating limit.
The first group of relations does not differ considerably from the polytropic case because we use normalized quan-
tities. Moreover, by comparing with the few available full GR results [11] we show that these relations will be most
probably very similar even if we drop the Cowling approximation. The biggest difference between polytropes and
realistic EoS is in the second group of relations for the frequencies and the damping times in the nonrotating limit.
More specifically the slope of the linear fit is different in the two cases which was also observed in the nonrotating
full GR case [5, 59].

(Doneva et al. ’13)
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Instabilities of rotating neutron stars
r-mode instability in LMXBs

This instability may explain why observed NSs in LMXB (and MSRP) have ν≲720Hz,
significantly smaller than the maximum (breakup) rotation rate.

If r-mode instability is responsible to this bound, it could be associated to 
significant GW emission from NSs in LMXBs

(but even in this optimistic case, GW searches may be difficult 
as long as we do not know M and ν of NSs in LMXB).

However, there is a problem:

(see Ho’s talk)

(Haskell et al. ‘14)

r-mode instability window

and T,ν of observed NSs

6 B.Haskell et al.
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Figure 2. R-mode instability window of LMXBs and MSRPs that have estimates of both the spin frequency and
surface temperature (arrows indicate upper limits). The right panel is the same as the left panel but focused on
the low temperature region in which the observed systems are located. It is obvious that a significant number of
systems is well inside the “minimal” instability window, where one would not expect to find so many systems. In
fact, for realistic values of the saturation amplitude, a star could not heat up enough to be significantly inside the
unstable region, while for high values of the saturation amplitude a system would spend only a very small fraction
of the time (less than 1%) above the instability curve, making it very unlikely to catch systems in this region. The
only possibilities are thus that either the instability curve is significantly different from our minimal model curve
due to additional damping mechanisms or the saturation amplitude is small enough not to affect the evolution of
the systems.

field (although one cannot rule out a much weaker mag-
netic field and low level GW emission, see Haskell & Patruno
(2011) for a discussion of why this is unlikely to be
the case in two other sources, SAX J1808.4-3658 and
XTE 1814-338). A final possibility is that systems in-
side the window have undergone a thermal runaway and
have reached an equilibrium between heating and cool-
ing (Bondarescu, Teukolsky & Wasserman 2007); they are
now either at spin equilibrium (i.e., with the GW spin-
down torque balancing the accretion spin-up torque) or ap-
proaching spin equilibrium (as could be the case for IGR
J00291+5934 which exhibits long-term spin-up). We discuss
this possibility further in the following section. It is, how-
ever, clear that the minimal model is not consistent with
observations.

We now discuss the possible mechanisms that may be
at work in a realistic NS and that could be consistent with
observations. We first examine effects due to properties of
the crust. One is that the crust may be more rigid than
is commonly assumed. This would lead to stronger dissipa-
tion at the crust-core interface. In Figure 4, we show the
effect of increasing the “slippage” factor S from a stan-
dard value of S = 0.05 (Glampedakis & Andersson 2006)
to S = 1 (a completely rigid crust). It is obvious that a
more rigid crust could allow all the systems to be stable (see
also Wen et al. 2011). However such a rigid (S = 1) crust
is not realistic. Alternatively, given the frequency range of
r-modes, the mode may couple effectively to torsional os-
cillations of the crust. This would produce strong dissipa-
tion at the resonance frequency (Levin & Ushomirsky 2001;
Glampedakis & Andersson 2006; Ho, Andersson & Haskell
2011)
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Figure 3. The same r-mode instability window as in the right
panel of Figure 2 where we have also estimated the error bars
due to the uncertainty in modelling the outer layers of the NS,
as described in the text. We can see that although there is a
significant uncertainty on the inferred core temperatures it is not
large enough to modify the conclusion that many of the systems
appear to be well inside the unstable region.

Another possibility is that core bulk viscosity may be
much stronger at low temperatures. For example, if hyperons
are present in the core, then a significantly restricted unsta-
ble region is created, as illustrated in Figure 5. The situation
for strange stars is somewhat similar, with bulk viscosity

 
1

⌧inst
=
X

i

1

⌧ idiss

!
possible cycle of r-mode

development (α≳10-3): 

• instability heats 
• GW emission spins down
• in stable region, cools
• accretion spins up

NS spends ≲1% of time in 
unstable region!smaller α
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Possible ways to reconcile theory with observations:
Saturation amplitude α is very small, r-mode instability does not affect the

    T-ν evolution.  Spin limit would be due to other mechanisms (e.g., disk-
    magnetosphere interaction). In this case, the GW emission would be weak.

r-mode instability in LMXBs

 Additional physical ingredients provide further damping that changes the 
    instability window; for instance:

• superfluid mutual friction

8 Brynmor Haskell et al.

a non-linear saturation mechanism for the r-mode, as the mode can only grow to the
point where the velocity perturbation is large for the Magnus force to push vortices
through flux-tubes (more specifically it is the counter-moving component of the ve-
locity perturbation that grows, but as it grows at the same rate as the total velocity
perturbation, this complication can be avoided in the following discussion. See [33]
for a detailed analysis). At this point the process is strongly dissipative and rapidly
damps the mode, thus setting a saturation amplitude αs, which takes the form [36]:

αs ≈ 10−6
(

λ0
0.1

)−1
( ν
500Hz

)−3
(

B
108G

)1/2
, (7)

where ν is the spin frequency of the star, and λ0 is the ratio between the amplitude
of the counter moving component of the mode to the amplitude of the oscillation in
the total velocity, as described in [36].
A similar effect could be at work in the deep core, if there is a transition to quark

matter. In this case a large enough velocity perturbation could lead to strong bulk
viscosity due to the different reactions on the two sides of the interface, which satu-
rates the mode [3]. Another possibility is that, if viscosity is weak at the crust-core
interface (due e.g. to the presence of so called ’pasta’ phases [44]), non linear cou-
plings saturate the mode at very low amplitudes [15]. In all these cases the saturation
amplitude α could be low enough to allow systems to be r-mode unstable, without
any observable signature. In this scenario old systems such as LMXBs are unlikely
to lead to strong GW emission due to unstable r-modes, with young NSs being a
much more promising GW source [4, 5].

Fig. 3 The instability window for strong mutual friction due to vortex/flux tube cutting in the core.
We show the results for two different models for the superfluid pairing gaps, the ’strong’ (left)
and ’weak’ (right) models described in [33]. In both cases the window can be reconciled with
observations for superfluid drag parameters of R ≈ 0.01, which is in the possible range for the
vortex flux tube cutting mechanism.

(Haskell et al. ‘12)
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FIG. 2: (color online) An example of instability window for
superfluid NS. The star is stable in the grey region, while
the white region is the instability window, splitted up by the
‘stability peak’ at T

∞
≈ T

∞
0 . The solid curves correspond

to instability curves for m = 2 modes I and II, respectively,
which experience avoided crossing at T∞

0 = 1.5× 108 K. The
dashed curves correspond to m = 2 r- and i

s-modes [panel (a)
only], plotted under the assumption that they are completely
decoupled. The grey line is the instability curve for m = 3
r-mode, plotted ignoring the resonance coupling with super-
fluid modes. The temperature T

∞
0 is shown by the vertical

dotted line. Panel (b) shows frequencies and temperatures of
the observed sources [50]. Only the fastest spinning source
4U 1608-522 is shown in panel (a).

calculations [58–60] that η is a function of T∞. Hence,
its variation is analogous to a variation of stellar tem-
perature. Figure 12 of Ref. [20] shows the dissipation
timescale τrMF due to mutual friction for m = 2 r-mode
(or, more accurately, for the oscillation mode which mim-
ics r-mode) as a function of η. One can see that τrMF

sharply decreases (by few orders of magnitude) at exactly
the same values of η at which one observes the resonances
between r- and is-modes in their figure 8, confirming thus
our model. Near the resonances r-mode starts to trans-
form into is-mode, and hence τrMF drops down rapidly.
Moving away from the avoided crossing (by decreasing
or increasing η), the solution found by Lee and Yoshida
resembles more and more m = 2 r-mode. Consequently,
τrMF grows on both sides of the resonance, approaching
the asymptote value corresponding to the pure (with no
admixture of is-mode) m = 2 r-mode [see filled circles in
Fig. 1(b)].
Realistic instability windows.– The avoided crossings

of modes dramatically modify the instability window.
For instance, assume that modes I and II experience an
avoided crossing at T∞ = T∞

0 = 1.5×108 K. Their insta-
bility curves, given by the condition 1/τGR+1/τDiss = 0,
are shown in Fig. 2(a,b) by solid lines. To plot the curves
we used Eqs.(1) and (2) and set ∆T∞ = 10−3T∞

0 . The
panel (b) is a version of panel (a), but plotted in a differ-
ent scale. In addition, Fig. 2(a,b) shows the instability
curves for: (i) m = 3 r-mode; (ii) m = 2 r-mode; (iii)
superfluid is-mode [panel (a) only]. The latter curves
(i)–(iii) are obtained using s = 0 approximation. As ex-
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FIG. 3: (color online) An example of evolutionary track of an
NS in LMXB. The evolution track ABCDEFA is shown by
solid line. The solid curves are instability curves for m = 2
modes I, II, and III, respectively; they experience avoided
crossing at T

∞
0 = 4.5 × 107 K (modes III and II) and 1.5 ×

108 K (modes II and I). Other notations are the same as in
Fig. 2.

pected, far from the avoided crossing the solid (modes I
and II) and dashed (r- and is-modes) lines almost coin-
cide. The instability window (at least one mode is un-
stable; white region) is splitted up by the ‘stability peak’
at T∞ ≈ T∞

0 [61]. This is an inherent feature of r- and
is-mode avoided crossing. In this region the instability
curves of modes I and II continuously change their be-
havior from is-mode-like asymptote to r-mode-like one
and vice versa. Therefore, for both modes the instability
occurs at larger frequency, than for pure m = 2 r-mode.
The most unstable mode at T∞ = T∞

0 is m = 3 r-mode;
it determines the stability peak height. In reality, an
r-mode can experience more than one avoided crossing
with the superfluid modes [20, 25, 27, 28]. Unfortunately,
the resonant temperatures T∞

0 have not yet been cal-
culated directly; here we treat them as free parameters
to be inferred from observations. In Fig. 3 we demon-
strate the instability windows for two avoided crossings
of r-mode with is-modes – at T∞ = 4.5 × 107 K and
T∞ = 1.5× 108 K.
NS evolution in LMXB.– Dramatic modification of

the instability window alters the evolution of an NS in
LMXB. Corresponding equations were derived in Ref.
[29] and are similar to those obtained in Refs. [62, 63]
in the absence of is-modes. They follow from (i) angular
momentum conservation, (ii) thermal balance of the star,
and (iii) evolution of each mode owing to damping mech-
anisms and excitation by gravitational radiation. The
solution to these equations results in the evolution track

• coupling of r-modes 
        with superfluid modes 

(Gusakov et al. ‘14)

In both cases
large GW emission

is possible!

Instabilities of rotating neutron stars
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Neutron star deformations

Rotating NSs emit GWs if they are not symmetric with respect to symmetry axis
with frequency νrot and 2νrot (potentially in detectors bandwidth). 

Deformations can be: 
•  triaxiality
•  misalignment between rotation and symmetry axes (“wobble angle”)
•  localised deformations (“mountains”)

All of them can be described by quadrupole ellipticity 

✏Q =
Q

I

mass-energy quadrupole deformation 
momentum of inertia

Deformation can be due to:

• accretion (heating the crust and perturbing the magnetic field)
• primordial magnetic field 

the emission is of the order h ⇠ 16⇡2G⌫2I

c4r
✏Q

this emission could explain
spin limit in LMXB!
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Neutron star deformations

LIGO/Virgo bounds

In some cases, best bounds on NS deformation 
come from 1st generation GW detectors 

Previous bound came from spin-down limit: ✏Q 
✓

5c5|⌫̇|
512⇡4G⌫5I

◆1/2

Bounds from GW non-detection by LIGO/Virgo are stronger!

No more than 2%
of the spin-down energy
is emitted throug GWs!

Beating the Crab pulsar spin-down limit 5
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Fig. 1.— The single template search upper limits from S5, for
the uniform and restricted prior ranges, and spin-down upper limit
plotted as exclusion regions in a moment of inertia–ellipticity plane.
Areas to the right of the diagonal lines are excluded. The dashed
horizontal lines represent estimates of the theoretical lower and up-
per bounds of acceptable moments of inertia at (1–3)×1038 kgm2.
The shaded area represents the region that is newly excluded with
these results.

Lin 2007; Haskell et al. 2007). However, our upper limits
do not constrain the composition of the star and cannot
constrain any fundamental properties of quark matter.
The ellipticity is proportional to the quadrupolar strain,
which may simply be very low for a given star no matter
its composition. The Crab is likely to have an ellipticity
at least about 10−11 due to the stresses of its internal
magnetic field (Cutler 2002) if the internal field is com-
parable to the external dipole of 4 × 1012 G. Our upper
limits can be interpreted as direct upper limits of about
1016 G on the internal magnetic field, depending on the
ratio of toroidal to poloidal components (Colaiuda et al.
2008).

As discussed in Abbott et al. (2007c) there is consid-
erable uncertainty in the true value of the Crab pulsar’s
moment of inertia. The best guesses at its value come
from neutron star equation of state models rather than
direct measurements. Previous pulsar ellipticity upper
limits and spin-down limits have made use of the canoni-
cal value of Izz . We can however cast our upper limit in a
way that makes no assumptions about the moment of in-
ertia, by placing the limit on the neutron star quadrupole
moment ≈ Izzε. This then allows us to plot the single-
template search results as exclusion regions in the I-ε

plane. The results, with uniform and restricted prior
ranges, are plotted in this way in Figure 1. Our up-
per limits are smaller than the spin-down limit by a fac-

tor that varies as I1/2
zz . If we take the theoretical upper

bound on the moment of inertia to be 3×1038 kgm2 as in
(Abbott et al. 2007c) then the result with uniform priors
beats the spin-down limit by a factor of 7.2.

Finally, the physical interpretation of our multi-
template search depends upon the assumed cause of
the splitting νGW = 2ν(1 + δ) between gravitational
and electromagnetic signals. In the context of the two-
component spin-down model, our results show that a
gravitational wave emitting component of the star cou-
pled to the electromagnetic (radio) emitting component
on a timescale of a few months or less has a quadrupole
asymmetry Iyy − Ixx of no more than 9.0 × 1034 kgm2.
This is about five times larger than the bound on Iyy−Ixx
obtained in the single-template search. If free precession
is responsible for the frequency splitting our results in-
stead give an upper limit on the product ∆I sin2 θ, where
∆I is the Izz − Ixx part of the quadrupole moment ten-
sor that participates in the precession and θ the wobble
angle (Jones & Andersson 2002).
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Neutron star deformations

Maximal deformation

There is a maximal deformation that the crust can sustain before breaking.

Standard scenario suggests εQ≲10-5-10-6 

but some “exotic matter” allows for larger values
(note that εQ~10-6 would mean a “mountain” as high as ~2cm!),

e.g. εQ≲10-4 for a strange quark star, εQ≲10-3 for a color superconducting quark star.

Alternatively, if a newly born proto-NS reaches stationary configuration
with deformations (due to magnetic fields) before crust formation,

the deformation could persist (but how long?) overcoming the above bounds.

(B.Haskell, D.Jones, N.Andersson, MNRAS ’06; B.Owen, PRL ’05; C.Horowitz & K.Kadau, PRL ’09;)
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Neutron star deformations

Accreting mountains

Thermal mountains

Due to crust heating as the accreted material sinks into the crust,
increasing density and starting nuclear reactions.

Difficult to estimate the magnitude of the deformation
(many parameters in the model).

Magnetic mountains

Due to local perturbations of the magnetic field structure 
by accreting material, leading (depending on the EoS) to 

10�8 . ✏Q . 10�4

(note that the larger value could crack the crust, 
and can be competitive with LIGO/Virgo bound)

(B.Haskell, D.Jones, N.Andersson, MNRAS ’06; M.Prymak, A.Melatos, D.Payne, MNRAS ’11; N.Johnson-McDaniel & B.Owen, PRD ’13)
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Neutron star deformations

Deformations from primordial magnetic field

• this mechanism requires wobble angle, 
       which decays as               (n~102-105)
       => up to few years for large B

Class. Quantum Grav. 28 (2011) 114014 L Gualtieri et al

4. Gravitational wave emission

If an axisymmetric NS with quadrupole ellipticity ϵQ induced by a magnetic field rotates about
an axis forming an angle α with the magnetic axis, it emits gravitational waves. If α is small,
gravitational radiation is mainly emitted at the same frequency ν as that of the rotation rate,
with amplitude

h0 ≃ 4G

rc4
(2πν)2I |ϵQ| sinα . (11)

We remark that the best available estimate of the ‘wobble angle’ α of a NS is α = 3◦ for PSR
B1828-11 [36]. In the Jones–Cutler process, which takes place as ϵQ < 0, the wobble angle
increases towards α = 90◦, with a great enhancement of the gravitational radiation. However,
as discussed in section 3, this is not the case for the twisted-torus configurations.

The detectability of gravitational emission from magnetically deformed NS, described by
equation (11), depends both on the overall magnetic field amplitude, which determines ϵQ

and on the duration of the emission process. Indeed, different dissipative processes tend to
reduce both the wobble angle and the rotation frequency, then reducing the time the emission
frequency spends in the bandwidth of ground-based interferometers (from a few tens to a few
hundreds of Hertz).

• As discussed in [37], the wobble angle of an oblate (ϵQ > 0) star with rotation period P
would decay, due to internal dissipation, in a timescale

τd ∼ nP

ϵQ

(12)

where the parameter n is unknown, since we do not have a clear understanding of the
damping mechanism. However, all the possible damping processes which have been
considered so far (see [8, 37] and references therein) lead to typical values for n in
the range 102–105. This would correspond to a damping timescale ranging from a few
months to a few tens of years if Bpole ∼ 1015 G. Therefore, after at most a few tens of
years the rotation and symmetry axis would become nearly parallel, and the gravitational
emission would become negligible, unless some pumping mechanism [37] takes place
which increases the wobble angle.

• A NS with dipolar field at the pole Bpole and wobble angle α spins down with a period
derivative Ṗ given by [3, 38]

Bpole ≃ 6.4 × 1019

√
P Ṗ

sinα
G (13)

(note that many authors consider the average surface magnetic field, which is 1
2Bpole [39,

40]). Since equation (13) implies that Ṗ = K/P (where K is a constant), the star slows
down from an initial period Pin to a period Pfin in the characteristic time

τc = 1
2K

(
P 2

fin − P 2
in

)
≃ P 2

fin

2K
. (14)

Therefore, a NS with Bpole of the order of 1015 G and a small wobble angle could lie in the
bandwidth of ground-based interferometers for a time ranging from a few months to a few
years. If the magnetic field is larger the star spins down more rapidly, making detection
more difficult. The detection is also unlikely if the parameter n in (12) is much smaller
than the upper limit ∼104, since in this case the wobble angle would rapidly decay.

7

• large B would spin down the NS to ν outside detector bandwidth in a few years

=> too rare for detection (these GWs are detectable for galactic sources)
but accretion from a companion could keep large spin and wobble 
for a longer time, raising the rate and making this signal detectable.

Magnetic field in a newly-born proto-NS can deform the star:

✏
Q

' k 10�4

✓
B

pole

1016 G

◆2
(k~4-9 depending

on the EoS)

B is expected to have a mixed 
toroidal-poloidal character (twisted torus)

Class. Quantum Grav. 28 (2011) 114014 L Gualtieri et al

Figure 1. The field lines of a twisted-torus magnetic field configuration, projected in the meridional
plane. The toroidal field is confined in the region inside the thick curves.

the essential features of the system: poloidal and toroidal fields, general relativity, and
‘realistic’ equation of state (EOS). In recent papers on the subject [11, 21–23] a twisted-torus
configuration has been considered, in which the poloidal magnetic field extends throughout
the star and in the exterior, whereas the toroidal field is confined to a torus-shaped region
inside the star where the field lines are closed (see figure 1). There are different reasons for
this choice.

• It has long been known that purely toroidal and purely poloidal magnetic field
configurations are unstable [24–26]; it is expected that a stable configuration should
have both components [27], with comparable amplitudes.

• Numerical simulations [15, 16] have shown that the magnetic field tends to have a twisted-
torus configuration in which the toroidal and poloidal components have comparable
amplitudes, for quite generic initial conditions (also see the analysis of [28]). This
configuration appears to be stable, at least on a timescale tA ! t ≪ tdecay. We remark that
these simulations have been performed in a Newtonian framework, assuming a polytropic
EOS for the stellar fluid.

• The results of [15, 16] can be understood, at least qualitatively, as follows. Let us consider
the magnetic helicity

Hm =
∫

A · B d V (1)

where A, B are the vector potential and the magnetic field, respectively (note that magnetic
helicity can also be defined in a relativistic framework). The following properties hold.

– The magnetic helicity is conserved on a timescale ≪ tdecay.
– It vanishes if the field is either purely poloidal or purely toroidal. Thus, if the field is

mixed (poloidal and toroidal) at the beginning, it must remain mixed for a long time.
– The toroidal field is proportional to the electric current, thus, neglecting the stellar

magnetosphere, it must vanish outside the star.
– The ratio between the toroidal and poloidal amplitudes can be described by a function
ζ , which is constant along each field line [19]. Therefore, a field line which extends
outside the star must have ζ = 0, i.e. it must be purely poloidal.

3

(Ciolfi et al. ‘10)

(B.Haskell, L.Samuelsson,, K.Glampedakis, N.Andersson, MNRAS ’08, A. Colaiuda, V.Ferrari, L.G., J.Pons, MNRAS ’08; 
S.Lander & D.Jones, MNRAS ’09; R.Ciolfi, V.Ferrari, L.G., MNRAS ’10;)
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Neutron star deformations

Previous estimates were based on simplified modelling of magnetic field,
in which it was treated “classically”, 

but in presence of a superfluid the picture is different.

If type II superconducting protons, deformation linear in B

✏Q ⇠ 10�4

✓
B

1016 G

◆✓
Hcrit

1016 G

◆

allows for smaller values of magnetic field.

For color-magnetic stars, deformation is much larger:
even the signal from Crab and  Vela may be detectable by ET. 

( K.Glampedakis,D.Jones,L.Samuelsson, PRL ’12; K. Henriksson & I. Wasserman, MNRAS ‘13; S.Lander PRL ’13, MNRAS ’14)
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Conclusions

Oscillating and deformed NSs are potential sources of GWs for 2nd and 3rd

   generation detectors, but there is still work to do to model emitting sources.

Stellar oscillations contain precious information on the NS EoS.
• Different classes of QNMs correspond to different physical features, which 

should be included in the model.
• It is difficult to estimate the amplitude of stable modes. 
• Unstable modes are a promising source of GWs, for newly born NSs and

       for accreting NSs in LMXB. 
• Unstable modes could also explain the spin limit of NSs.

Stellar deformations, due to accretion or to primordial magnetic fields,
    are also a potential source of GWs, but we do not know yet the amplitude 
    of the deformation.


